P-Doped Photocatalysts

DOI: 10.1002/ange.201108276

Phosphate Doping into Monoclinic BiVO₄ for Enhanced Photoelectrochemical Water Oxidation Activity**

Won Jun Jo, Ji-Wook Jang, Ki-jeong Kong, Hyun Joon Kang, Jae Young Kim, Hwichan Jun, K. P. S. Parmar, and Jae Sung Lee*

Hydrogen has been touted as an energy carrier of the future because it combines with oxygen to produce only water with no greenhouse gases or other pollutants. For hydrogen to play the role, it must be produced in a sustainable manner from a renewable energy source, such as solar energy.^[1] Unlike the electricity produced from the most common photovoltaic cells, hydrogen could store the solar energy in the form of chemical energy. One of the most attractive solar energy conversion reactions is the photoelectrochemical (PEC) or photocatalytic water splitting directly to H₂ and O₂. Since its initial demonstration by Fujishima and Honda with a TiO2 electrode under ultraviolet light, [2] there has been steady progress in this field in search of semiconductor photocatalytic electrode materials that work under visible light irradiation for ample solar light absorption. However, the photocatalysts with high efficiency, durability, and economic feasibility are still elusive.^[3,4]

Scheelite-monoclinic BiVO₄ (mBiVO₄) is a well-known photocatalyst, which absorbs visible light owing to a suitable band-gap energy ($E_{\rm g} \approx 2.4~{\rm eV}$). It is also nontoxic and chemically stable in aqueous solution under irradiation. However, pristine mBiVO₄ usually shows a low photocatalytic activity owing to poor charge-transport characteristics [7] and the weak surface adsorption properties. Numerous attempts have been made to improve the photocatalytic activity of BiVO₄, including heterojunction structure formation, [7,9,10] loading co-catalysts, [11-13] and impurity doping. [8,14,15]

Impurity doping, that is, the addition of a small percentage of foreign atoms in the regular crystal lattice of semiconductors, produces dramatic changes in their electrical properties by increasing their electron or hole densities. In photocatalysis by BiVO₄, for example, doping with molybdenum to

replace a small fraction of vanadium was found to improve the photocatalytic activity for water oxidation. [8,14,15] Phosphorus is a typical dopant for silicon or germanium to make it an n-type semiconductor. However, it has been rarely used as dopant for semiconductor photocatalysts. This is rather surprising because other non-metallic elements, such as N, C, and S, have been widely used as anionic dopants for photocatalysts to reduce their band-gap energies. [16]

In the present work, for the first time we doped phosphorous into the vanadium sites in the host lattice of BiVO₄, replacing some of the VO₄ oxoanions in BiVO₄ with PO₄ oxoanions. Oxoanion doping into the photocatalyst is to the best of our knowledge also a new concept. Herein we report effects of PO₄ oxoanion doping on the photoelectrochemical or photocatalytic behavior of mBiVO₄ under visiblelight illumination. The PO₄ oxoanion doping did not bring about significant changes in the optical absorption behavior and crystal structure of mBiVO₄. When an appropriate amount PO₄ oxoanion was doped, however, the activity of photoelectrochemical water oxidation increased very significantly by a factor of about 30. The origin of the enhanced photoelectrochemical properties of PO₄ oxoanion-doped BiVO₄ was elucidated by using electrochemical impedence spectroscopy (EIS) and density functional theory (DFT) calculations.

The XRD patterns of pristine BiVO₄ and three PO₄doped BiVO₄ samples with different target atom ratios (0.5%, 1%, and 5%) are shown in Figure 1a. These four patterns are identical to that of pure monoclinic BiVO₄ (clinobisvanite; space group: I2/a, JCPDS card No. 014-0688) without any impurity phase, such as BiPO₄ and oxides of bismuth or vanadium. Figure 1b exhibits the magnified view of (121) and (040) peaks, which show gradual shifts of peaks toward lower angles with increasing PO₄ oxoanion doping level. The 5% PO₄-doped sample shows the largest peak shift by 0.10°. The full-width at half-maximum (FWHM) also gradually increases by 11% compared with pristine BiVO₄, reflecting the increased strain or reduced grain size of the doped photocatalyst. These XRD results indicate that P⁵⁺ has been well inserted into V⁵⁺ sites of the host BiVO₄ lattice without forming any segregated impurity phase.^[17]

The UV/Vis absorption spectra of the pristine and three doped BiVO₄ samples are illustrated in Figure 1 c. The shape of the UV/Vis absorption spectra of the four samples are almost the same despite PO₄ doping. The optical band-gap energies of the four samples were estimated from the absorption spectra by using the following relationship: $\alpha h \nu = A \left(h \nu - E_g\right)^{n/2}$ where α , $h \nu$, A, and E_g are the absorption coefficient, the photon energy, constant, and the optical band-

[*] W. J. Jo, [*] Dr. J.-W. Jang, [*] H. J. Kang, J. Y. Kim, Dr. H. Jun, Dr. K. P. S. Parmar, Prof. J. S. Lee

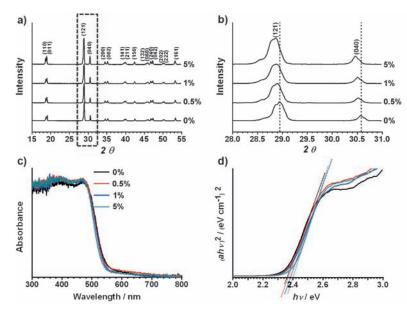
Department of Chemical Engineering and Division of Advanced Nuclear Engineering, Pohang University of Science and Technology (POSTECH)

San 31, Hyoja-dong, Pohang 790-784 (Korea)

E-mail: jlee@postech.ac.kr

Dr. K.-j. Kong

Korea Institute of Chemical Technology


100 Jang-dong, Yuseong-gu, Daejeon, 305-343 (Korea)

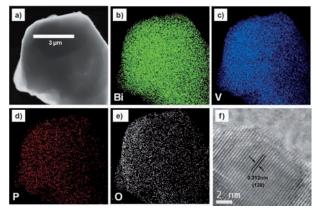
[+] These authors contributed equally to this work.

[***] This research was supported by thr Hydrogen Energy Centre (a Frontier Research Program of NRF, Korea), the Korean Centre for Artificial Photosynthesis (NRF-2011-C1AAA001-2011-0030278), WCU, Brain Korea 21, and A3 foresight programs (NRF, Korea).

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201108276.

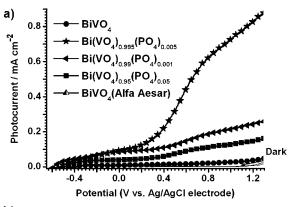
Figure 1. a) X-ray diffraction of pristine $BiVO_4$, and 0.5%, 1%, and 5% PO_4 -doped $BiVO_4$; b) magnified peaks of (120) and (040) planes. c) UV/Vis absorption spectra and d) Tauc plot of bare $BiVO_4$, and 0.5, 1, and 5% PO_4 -doped $BiVO_4$.

gap energy, respectively. The value of n depends on whether the transition is direct (n=1) or indirect (n=4), and it was determined to be unity from the absorption spectra. The band-gap energy was determined by extrapolating the linear part of $(\alpha h v)^2$ vs. h v plot to the energy axis at a=0 as shown in the Figure 1 d. According to the Tauc plot, the optical band-gap energies of the four samples are not much different, yet they showed systematic increase with P doping level, that is, pristine BiVO₄ (ca. 2.36 eV), 0.5 % P (ca. 2.37 eV), 1 % P (ca. 2.38 eV), and 5 % P (ca. 2.40 eV). The small difference in band gap will be discussed based on the results of DFT calculations.


The morphology and microstructure of the pristine and PO₄-doped samples observed by FESEM are exhibited in Figure S1 of Supporting Information. The close inspection of the images reveals that the particle shape of the four samples is an irregular polyhedron and the morphology and size distribution of 0.5, 1% PO₄-doped BiVO₄ were similar to those of pristine BiVO₄. However, for 5% PO₄-doped BiVO₄, average size of BiVO₄ particles was much smaller than that of pristine BiVO₄ (Supporting Information, Figure S1 d inset). When a large amount of PO₄ is doped into the lattice of BiVO₄, it seems to interfere with the crystallization of BiVO₄, making average size of BiVO₄ smaller. This is also consistent with the increased FWHM of (121) and (040) peaks for the heavily doped sample.

The real atomic ratios of vanadium to phosphorus of the three PO₄-doped BiVO₄ samples were determined by the ICP analysis. Table S1 of Supporting Information indicates that the actual concentrations of vanadium of the three samples are less than those introduced initially during the synthesis. It appears that the PO₄ oxoanion not doped into the BiVO₄ lattice has been dissolved in water and removed during the purification step.

It is possible that the PO₄ anion is present as BiPO₄ forming a heterojunction with BiVO₄ instead of doping into the BiVO₄ lattice. To check the existence of BiPO₄, we performed SEM-EDS point analysis several times, especially on the small particles scattered over the surface of a large BiVO₄ particle (Supporting Information, Figure S1). The concentration of phosphorus in 0.5% and 1% PO₄-doped BiVO₄ was below the detection limit of SEM-EDS, yet phosphorous contents in 5% PO₄-doped BiVO₄ (3.5%) was comparable with the actual doping amount (Supporting Information, Figure S2). This indicates that many small particles on the surface of a large BiVO₄ particle are not BiPO₄ but PO₄-doped BiVO₄.


To further investigate the state of the PO_4 doping, HR-TEM EDS elemental mapping was carried out. Figure 2 a shows a high-angle annular dark-field (HAADF) image of a $0.5\,\%$ PO_4 -doped BiVO₄ particle. The EDS elemental maps in Figure 2 b—e demonstrate that Bi, V, P, and O are distributed homogeneously within the $0.5\,\%$ PO_4 -doped BiVO₄ particle. The homogeneous

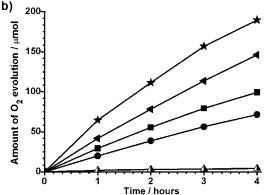
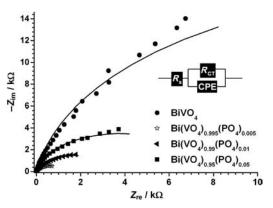

distribution of the four elements were also confirmed in 1% and 5% PO₄-doped samples (Supporting Information, Figure S3, S4). These results show that the PO₄ oxoanion has been doped into the BiVO₄ lattice well without producing any segregated-phase-like vanadate, bismuth oxides, or BiPO₄. Figure 2 f shows a lattice spacing of 0.312 nm corresponding to the interplanar spacing of (130) plane of *m*BiVO₄.

Figure 2. a) High-angle annular dark-field (HAADF) image of a 0.5% PO₄-doped BiVO₄ particle. b)—e) Elemental mapping of b) Bi, c) V, d) P, and e) O. f) HR-TEM image of the doped particle showing the interplanar spacing of (130) plane of monoclinic BiVO₄ (0.312 nm).

Photocurrent density accompanying water oxidation was measured to elucidate the effect of PO₄ doping into the $m \text{BiVO}_4$ lattice under visible light ($\lambda \geq 420 \text{ nm}$). All the samples were synthesized in a powder form by urea-precipitation method and they were loaded onto the fluorine-doped tin oxide (FTO) glass by using electrophoretic deposition (EPD) technique. Figure 3 a illustrates how photocurrent

Figure 3. a) Photocurrent–potential curves of pristine BiVO₄, and 0.5, 1, and 5 % PO₄-doped BiVO₄. The back side of photo-anodes was illuminated with a xenon arc lamp (300 W) fitted with a UV cut-off filter ($\lambda \geq$ 420 nm). b) Photocatalytic water oxidation with bare and PO₄-doped BiVO₄ under the visible-light ($\lambda >$ 420 nm) irradiation. The photocatalyst powders (0.1 g) were dispersed in aqueous AgNO₃ solution as an electron scavenger.


density of the four photoanodes varies under dark and visible light illumination as applied anodic potential increases from $-0.6\,V$ to $+1.2\,V$ (vs. Ag/AgCl). Visible light irradiation on photoanodes drives PEC water oxidation reactions to generate photoelectrons, which are collected by the FTO substrate to produce currents: $2\,H_2O(l) + h\nu \rightarrow O_2(g) + 4\,H^+ + 4\,e^-$.

As Figure 3 a shows, the photocurrent increased dramatically by PO₄ oxoanion doping. In the best case, the photocurrent (0.548 mA cm⁻² at 0.7 V) produced by 0.5 % PO₄-doped BiVO₄ is about 30 times higher than the photocurrent (0.019 mA cm⁻² at 0.7 V) produced by pristine BiVO₄. The potential (0.7 V) adopted for comparison corresponds to 1.23 V vs. RHE at pH 6.6, which is the theoretical potential necessary for water oxidation: $E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059 ~\rm pH + E^{\circ}_{\rm Ag/AgCl}$ ($E^{\circ}_{\rm Ag/AgCl} = 0.209 ~\rm V$ at 25 °C) The 1 % and 5 % PO₄-doped BiVO₄ anodes also showed much enhanced photocurrents relative to the pristine BiVO₄ electrode, but they were much less than that for 0.5 % PO₄-doped BiVO₄.

The photocatalytic water oxidation activity of pristine and PO_4 -doped $BiVO_4$ photocataltysts were also measured for powder samples in 100 mL of aqueous $AgNO_3$ solution under visible light irradiation ($\lambda > 420$ nm). Here, Ag^+ ions from $AgNO_3$ played the role of an electron scavenger: $2H_2O(1) +$

 $h\nu+4\,\mathrm{Ag^+}\!\!\to\!\!\mathrm{O_2(g)}+4\,\mathrm{H^+}+4\,\mathrm{Ag}$. In line with the trend of photocurrent generation shown in Figure 3 a, Figure 3 b shows that the largest amount of $\mathrm{O_2}$ is evolved by $0.5\,\%$ PO₄-doped BiVO₄, which is more than triple the amount of $\mathrm{O_2}$ evolved by bare BiVO₄. The order of activity was also the same: pristine BiVO₄ < 5% PO₄-doped < 1% PO₄-doped < 0.5% PO₄-doped BiVO₄. It should also be noted that the photocatalytic activities of the four BiVO₄ samples prepared by the urea-precipitation method are much higher than the commercial BiVO₄ (Alfa Aesar, 99.9%).

To study the origin of the enhanced PEC and photocatalytic activity, electrochemical behavior of PO₄-doped BiVO₄ was investigated by the electrochemical impedance spectroscopy (EIS).^[18] The EIS measurements were carried out at the same condition where semiconductor generated photocurrents (0.7 V vs. Ag/AgCl, visible light) to relate the impedance response directly to the physical processes responsible for the photocurrent generation.^[19] The results of EIS are presented in Figure 4 in the form of Nyquist plots. Here,

Figure 4. Electrochemical impedence spectroscopy measured at 0.7 V (vs. Ag/AgCl) in $0.5 \,\mathrm{m}$ Na₂SO₄ solution. The inset shows an equivalent circuit for the photoanodes (see text for details).

the x axis represents the real part of measured impedance and the y axis represents the negative number of the imaginary part of measured impedance. The small dots in the plot represent the experimental data and the solid lines represent the result of fitting these experimental data to the equivalent circuit model. The solid line was fitted by ZSimpWin software using the proposed equivalent circuit model. The Nyquist plot can be interpreted in terms of the equivalent circuit as displayed in the inset. Here, the EIS data were measured using a three-electrode cell system, thus the arc in Nyquist plot represents the charge transfer kinetics on the working electrode. We selected the Randles-Ershler model, [20] in which $R_{\rm s}$ is the solution resistance, CPE is the capacitance phase element for the semiconductor || electrolyte interface, and R_{ct} is the charge transfer resistance across the interface. The smaller value of $R_{\rm ct}$ and the larger value of a CPE represent improved charge transport characteristics making favorable environment for charge separation in PEC reactions. An RC circuit represents an interface within the cell. Thus, the arcs in the Nyquist plot are related to charge transfer at the semiconductor | electrolyte interface.

The fitted values of R_{ct} were 36946, 1206, 3685, and 7651 Ω for pristine BiVO₄, 0.5%, 1%, and 5% PO₄-doped $BiVO_4$ electrodes, respectively. The fitted value of R_{ct} for 0.5 % PO₄-doped BiVO₄ is about 30 times smaller than that of pristine BiVO₄, which show a perfect correlation with the activity trends of both PEC photocurrent generation and photocatalytic O₂ generation. Thus, the improved charge transfer characteristic of PO₄-doped BiVO₄ is the most important factor responsible for their enhanced photocatalytic performance. The efficient charge transfer at the semiconductor | electrolyte interface suppresses the charge recombination and enhance the efficiency of PEC water oxidation. $^{[7,21]}$ When the PO_4 doping level increased to 1 % or 5%, charge transfer resistance increased compared with 0.5%-doped BiVO₄. The excessive amount of PO₄ oxoanion doping seems to form defect sites in the monoclinic BiVO₄ lattice, which act as electron-hole recombination sites.

By unprecedented PO₄ oxoanion doping of mBiVO₄, we observed a dramatic enhancement of photoelectrochemical water oxidation activity by a factor of about 30. According to the EIS study, this is correlated well with the greatly improved change transfer characteristics at the semiconductor | electrolyte interface. To elucidate the pronounced doping effect, we performed density functional theory (DFT) calculations of electronic structures.

Clinobisvanite BiVO₄ has a monoclinic structure (point group: C_{2h}^6 , space group: C_{2c}^6) and contains four bismuth or vanadium atoms and sixteen oxygen atoms in the unit cell. Its basic structural unit is constructed by VO₄ tetrahedron and BiO₈ dodecahedron, in which bismuth and vanadium atoms are arranged alternately to form a continuous zigzag line on the (221) plane. To obtain self-consistent results, we optimized lattice constants and atomic coordinates, which were obtained by minimizing the total energy, internal stress, and atomic forces. This was done by performing an iterative process in which the cell parameters and coordinates of the atoms are adjusted so that the total energy of the structure is minimized. The relaxation run was considered converged when the force on the atom was less than 0.01 eV Å^{-1} . By doing so, we could obtain stable structures for all of the models. By optimizing the pure clinobisvanite BiVO₄ structure, we obtained the lattice parameters as follows: a = 7.304, b = 11.744, c = 5.165 Å, $\beta = 135.003^{\circ}$. These parameters were in good agreement with experimental values: [22] a = 7.258, b =11.706, c = 5.084 Å, $\beta = 134.073^{\circ}$. Because doping occurs within bulk BiVO₄, our PO₄ doping model uses the same lattice constants with pristine BiVO₄. To avoid the selfinteractions of impurity, we adopted the supercell method with sufficient length on all directions. Our PO₄ doping model consists of two unit cells stacked both along the a and c axes in which one of sixteen vanadium atoms is substituted by a phosphorus atom (6.25% of PO₄ doped), which is comparable to those used in the experiments.

Figure 5 a shows the projected density of states (pDOS) of pristine BiVO₄ and P-doped BiVO₄. The calculated band gap of pure BiVO₄ is about 1.94 eV, which is smaller than the experimental value of 2.36 eV owing to the well-known limitation of DFT, that is, the underestimation of band gap. Upon PO₄ doping, the band gap becomes slightly larger

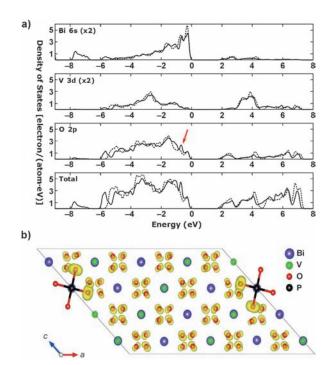


Figure 5. a) Total and local partial density of states of monoclinic clinobisvanite BiVO₄ (•••••) and P-doped BiVO₄ (—). The main effect of P-doping occurs as an additional O2p peak at -0.7 eV (marked by an arrow). The DOS is decomposed into the main electron states of each component. Note the slight increase of band gap upon P substitution. b) Calculated isosurface (0.04 el Å⁻¹) of integrated charge density in the range from -0.7 eV to E_f for P-doped BiVO₄. Note the enhancement of p_{π} states of O bonded with the P atom. Only P-O bonds are shown for clarity.

(1.95 eV for 6.25 % doping and 2.00 eV for 25 %). This result corrsponds well with a slight band-gap change obtained by the Tauc plots. This is also one of the important pieces of evidence that the PO₄ oxoanion is well-doped.

As is well-known for metal oxides, the top of valence band (VB) is composed of O2p states and conduction band (CB) bottom comes from V3d states. Upon PO₄ substitution, the DOS of the VB top increases; the ratio of integrated DOS in the energy windows of -0.7 eV from the VB top to total electrons is 4.0% and 5.9% for pristine and PO₄-doped BiVO₄, respectively. The larger DOS in the VB around the Fermi energy $E_{\rm F}$ implies an increase of charge carriers, resulting in lower R_{CT}. This will lead to higher PEC activity.

The Bader charge analysis^[23] shown in Figure 5b suggests that the substituted phosphorus atom has a much smaller charge (1.357 electrons) than the vanadium atoms (3.102 electrons). The depleted electrons from the phosphorus atom accumulate around neighboring oxygen atoms, enhancing the non-bonding $\mathrm{O}\,2p_\pi$ states. The calculated Bader charges of oxygen atoms in the PO₄ tetrahedron slightly fluctuate in the range from 7.406 to 7.453 electrons. The oxygen atoms have charges of 6.966 electrons in the pristine BiVO₄. The length of the P-O bond is 1.563 Å, which is slightly smaller than the V-O bond (1.737 Å). Owing to the lattice strain imposed by the different V-O and P-O bond lengths and the charge redistribution around the dopant, there exists an internal

3204

electric field. This effect is very advantageous for the separation of electron-hole pairs, which can improve the photocatalytic property.

To summarize, we have investigated PO_4 oxoanion doping into $mBiVO_4$ for the first time. The $0.5\,\%$ PO_4 -doped $BiVO_4$ showed the best photocurrent density, which is about 30 times higher than that of pristine $BiVO_4$. The same trend was observed for photocatalytic O_2 evolution rates. EIS measurements revealed that PO_4 oxoanion doping lowered the charge transfer resistance of $mBiVO_4$ remarkably. Finally, DFT calculations showed increased charge carriers in PO_4 -doped $mBiVO_4$. Both results indicate that the origin of the enhanced photoelectrochemical and photocatalytic properties of PO_4 oxoanion-doped $mBiVO_4$ greatly improves the charge-transfer characteristics of $mBiVO_4$.

Received: November 24, 2011 Published online: February 17, 2012

Keywords: bismuth · doping · phosphates · photolysis · vanadates

- [1] M. Grätzel, Inorg. Chem. 2005, 44, 6841-6851.
- [2] A. Fujishima, K. Honda, Nature 1972, 238, 37-38.
- [3] K. Maeda, K. Domen, J. Phys. Chem. C 2007, 111, 7851-7861.
- [4] D. Yamasita, T. Takata, M. Hara, J. N. Kondo, K. Domen, *Solid State Ionics* 2004, 172, 591–595.
- [5] A. Kudo, K. Omori, H. Kato, J. Am. Chem. Soc. 1999, 121, 11459-11467.

- [6] S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 2001, 13, 4624–4628.
- [7] S. J. Hong, S. Lee, J. S. Jang, J. S. Lee, Energy Environ. Sci. 2011, 4, 1781 – 1787.
- [8] W. Yao, H. Iwai, J. Ye, Dalton Trans. 2008, 1426-1430.
- [9] M. Long, W. Cai, H. Kisch, J. Phys. Chem. C 2008, 112, 548 554.
- [10] H. Q. Jiang, H. Endo, H. Natori, M. Nagai, K. Kobayashi, *Mater. Res. Bull.* 2009, 44, 700–706.
- [11] H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, Z. Gu, J. Hazard. Mater. 2008, 153, 877–884.
- [12] S. Kohtani, M. Tomohiro, K. Tokumura, R, Nakagaki, Appl. Catal. B 2005, 58, 265–272.
- [13] S. Kohtani, J. Hiro, N. Yamamoto, A. Kudo, K. Tokumura, R. Nakagaki, Catal. Commun. 2005, 6, 185–189.
- [14] W. Yao, J. Ye, J. Phys. Chem. B 2006, 110, 11188-11195.
- [15] W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou, Energy Environ. Sci. 2011, 4, 4046–4051.
- [16] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269–271.
- [17] A. Zhang, J. Zhang, J. Hazard. Mater. 2010, 173, 265-272.
- [18] S. Banerjee, S. K. Mohapatra, P. P. Das, M. Misra, *Chem. Mater.* 2008, 20, 6784–6791.
- [19] E. A. Ponomarev, L. M. Peter, J. Electroanal. Chem. 1995, 396, 219–226.
- [20] J. E. Randles, Discuss. Faraday Soc. 1947, 1, 11-19.
- [21] X. M. Song, J. M. Wu, M. Z. Tang, B. Qi, M. Yan, *J. Phys. Chem. C* **2008**, *112*, 19484–19492.
- [22] A. W. Sleight, H. y. Chen, A. Ferretti, D. E. Cox, Mater. Res. Bull. 1979, 14, 1571 – 1581.
- [23] G. Henkelman, A. Arnaldsson, H. Jónsson, *Comput. Mater. Sci.* 2006, 36, 354–360.

3205